65,178 research outputs found

    Barrier modification in sub-barrier fusion reactions using Wong formula with Skyrme forces in semiclassical formalism

    Full text link
    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended â„“\ell-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra ``barrier lowering" or ``barrier narrowing" for a best fit to data. For the 64^{64}Ni+100^{100}Mo reaction, the â„“\ell-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64^{58,64}Ni+58,64^{58,64}Ni, fits the data best for SIII force. Hence, the barrier modification effects in â„“\ell-summed Wong expression depends on the choice of Skyrme force in extended ETF method.Comment: INPC2010, Vancouver, CANAD

    Gap solitons with null-scattering

    Full text link
    We study excitation of gap solitons under the conditions of coherent perfect absorption (CPA). Our system consists of a symmetric periodic structure with alternating Kerr nonlinear and linear layers, illuminated from both the ends. We show near-total transfer of incident light energy into the gap solitons resulting in null-scattering. We also report on the nonlinear super-scattering (SS) states. Both the CPA and the SS states are shown to be characterized by typical field distributions. Both the exact and the approximate results (based on nonlinear characteristic matrix method) are presented, which show good agreement

    Resonance State Wave Functions of 15^{15}Be using Supersymmetric Quantum Mechanics

    Full text link
    The theoretical procedure of supersymmetric quantum mechanics is adopted to generate the resonance state wave functions of the unbound nucleus 15^{15}Be. In this framework, we used a density dependent M3Y microscopic potential and arrived at the energy and width of the 1.8 MeV (5/2+^+) resonance state. We did not find any other nearby resonances for 15^{15}Be. It becomes apparent that the present framework is a powerful tool to theoretically complement the increasingly important accelerator based experiments with unbound nuclei.Comment: 5 pages, 4 figures, Phys. Lett. B (2017

    Retrieval of surface temperature by remote sensing

    Get PDF
    A simple procedure and computer program were developed for retrieving the surface temperature from the measurement of upwelling infrared radiance in a single spectral region in the atmosphere. The program evaluates the total upwelling radiance at any altitude in the region of the CO fundamental band (2070-2220 1/cm) for several values of surface temperature. Actual surface temperature is inferred by interpolation of the measured upwelling radiance between the computed values of radiance for the same altitude. Sensitivity calculations were made to determine the effect of uncertainty in various surface, atmospheric and experimental parameters on the inferred value of surface temperature. It is found that the uncertainties in water vapor concentration and surface emittance are the most important factors affecting the accuracy of the inferred value of surface temperature
    • …
    corecore